1 minute read

Planar 2D-2D Geometry (Projective Geometry)


Overview of Perspective Geometry

Untitled

  • Planar Homography Estimation

    Untitled

    • Unknown
      • Planar homography (8 DoF)
    • Given
      • Point correspondence $\left(\mathbf{x}{1}, \mathbf{x}{1}^{\prime}\right), \ldots,\left(\mathbf{x}{n}, \mathbf{x}{n}^{\prime}\right)$
    • Constraints
      • $n \times \text { projective transformation } \mathbf{x}{i}^{\prime}=\mathrm{H} \mathbf{x}{i}$
    • Solutions ($n \geq 4$) ⇒ 4-point algorithm
    • [Note] Planar homography can be decomposed as relative camera pose.

General 2D-2D Geometry (Epiploar Geometry)


Overview of Epipolar Geometry

Untitled

Fundamental Matrix

Untitled

Essential Matrix

Untitled

Epiplar Geometry

Untitled

Untitled

  • Relative Camera Pose Estimation (~ Fundamental/Essential Matrix Estimation)

    Untitled

    • Unknown
      • Rotation and translation $\mathrm{R,t}$ (5 DoF; up-to scale “scale ambiguity”)
    • Given
      • Point correspondence $\left(\mathbf{x}_1, \mathbf{x}_1^{\prime}\right), \ldots,\left(\mathbf{x}_n, \mathbf{x}_n^{\prime}\right)$
      • camera matrices $\mathrm{K,K’}$
    • Constraints
      • $n \times \text { epipolar constraint }\left(\mathbf{x}^{\prime \top} \mathrm{F} \mathbf{x}=0 \text { or } \hat{\mathbf{x}}^{\prime \top} \mathrm{E} \hat{\mathbf{x}}=0\right)$
    • Solutions (OpenCV)
      • Fundamental matrix: 7/8-point algorithm (7 DoF)

        Estimation: cv::findFundamentalMat() ⇒ 1 solution

        Conversion to $\mathrm{E}$: $\mathrm{E}=\mathrm{K}^{\prime \top} \mathrm{FK}$

        Degenerate cases: No translation, correspondence from a single plane

        → intrinsic & extrinsic camera parameters

      • Essential matrix: 5-point algorithm (5 DoF)

        Estimation: cv::findEssentialMat() ⇒ $k$ solutions

        Decomposition: cv::decomposeEssentialMat() ⇒ 4 solutions “relative pose ambiguity”

        Decomposition with positive-depth check: cv::recoverPose() ⇒ 1 solution

        Degenerate case: No translation ($\because \mathrm{E}=[\mathrm{t}]_{\times} \mathrm{R}$)

        → extrinsic camera parameters

      • Planar homography: 4-point algorithm (8 DoF)

        Estimation: cv::findHomography() ⇒ 1 solution

        Conversion to calibrated $\mathrm{H}$: $\widehat{\mathrm{H}}=\mathrm{K}^{\prime-1} \mathrm{HK}$ → Decomposition: cv::decomposeHomographyMat() ⇒ 4 solutions → Degenerate case: Correspondence not from a single plane

        → intrinsic & extrinsic camera parameters + plane normal

본 포스트는 최성록 교수님의 An Inviation to 3D Vision 자료를 정리한 것입니다.

Categories:

Updated: